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    Chapter 12   

 A Quantitative High-Throughput Screening Data Analysis 
Pipeline for Activity Profi ling                     

     Ruili     Huang      

  Abstract 

   The US Tox21 program has developed in vitro assays to test large collections of environmental chemicals 
in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose titrations to generate 
over 50 million data points to date. Counter screens are also employed to minimize interferences from 
non-target-specifi c assay artifacts, such as compound auto fl uorescence and cytotoxicity. New data analysis 
approaches are needed to integrate these data and characterize the activities observed from these assays. 
Here, we describe a complete analysis pipeline that evaluates these qHTS data for technical quality in terms 
of signal reproducibility. We integrate signals from repeated assay runs, primary readouts, and counter 
screens to produce a fi nal call on on-target compound activity.  
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1       Introduction 

 The US  Tox21   program [ 1 – 4 ],  a   collaboration among the National 
Institute of Environmental Health Sciences (NIEHS)/National 
Toxicology Program (NTP), the US Environmental Protection 
Agency’s (EPA) National Center for Computational Toxicology 
(NCCT), the National Institutes of Health (NIH) National Center 
for Advancing Translational Sciences (NCATS), and the US Food 
and Drug Administration (FDA), is aimed at developing alternative 
testing methods that can quickly and effi ciently assess the toxic poten-
tial of tens of thousands of environmental chemicals. Working toward 
this goal, the  Tox21   program has successfully developed various cell-
based assays to serve as in vitro models for toxicity assessment [ 4 – 7 ]. 
These assays have been miniaturized and validated in a  1536-well 
plate format   at NCATS for quantitative high- throughput screening 
(qHTS) [ 8 ]. These assays are currently being screened against a col-
lection of ~10,000 compounds ( Tox21   10 K) composed of environ-
mental chemicals and approved drugs as triplicate 15-dose titrations, 
generating over 50 million data points to date [ 9 – 11 ]. 
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 The use of qHTS to produce high quality and biologically relevant 
data is critical in correlation to in vivo activity, low dose extrapolation, and 
risk assessment. However, as with any technology, these assays are not 
immune to noise or artifacts that may interfere with the true biological 
activity. When a signal is observed in an assay, it is important to be able to 
distinguish a true biological effect from an artifact. In addition to “noise” 
and experimental variations, common artifacts found with fl uorescence or 
luminescence- based reporter assays, such as those employed by  Tox21  , 
include compound  auto fl uorescence   [ 12 ], interference with the assay 
reporter gene [ 13 ], and  cytotoxicity   [ 6 ]. Compound  auto fl uorescence   
often interferes with agonist mode assays, in which an increase in signal 
indicates activity. Compound interaction with the assay reporter gene itself 
could be mistaken for either agonist activity, when the compound activates 
the reporter gene, or antagonist activity, when the compound inhibits the 
reporter gene. Luciferase and β-lactamase  reporters   are commonly used in 
 Tox21   and other  HTS   assays. Finally, cell-based antagonist mode assays are 
often confounded with  cytotoxicity   interference because both cell death 
and inhibition of the target of interest result in a decrease in assay signal. 

 To minimize compound or assay technology-dependent arti-
facts, all compounds in the  Tox21   10 K library are tested for  auto 
fl uorescence   at wavelengths used for assay readouts and for luciferase 
activity. In addition, each assay is multiplexed with  cell viability   mea-
surements to identify  cytotoxicity   interference. The challenge is then 
to devise methods to (1) evaluate these qHTS data for technical qual-
ity, e.g., signal  reproducibility  , and (2) integrate signals from repeated 
assay runs, primary readouts and counter screens to produce a fi nal 
call on on-target compound activity. Here, we describe a complete 
qHTS data analysis pipeline developed at NCATS that begins with 
plate level raw data processing, followed by  concentration response   
curve fi tting and classifi cation, data  reproducibility   evaluation, and 
assignment of  activity outcomes   to compounds through integration 
of data from multiple readouts and counter screens. This approach 
has been applied to all the qHTS data generated from the  Tox21   
assay validation runs and 10 K screens, and can be adapted to analyze 
other qHTS data generated in a similar fashion.  

2    qHTS Data Pipeline 

   During the execution of the screen, quality metrics, such as CV, 
S/B, and Z-factor [ 14 ], are calculated using raw fl uorescence or 
luminescence reads from each plate to monitor gross assay perfor-
mance. These metrics are recorded for each plate and examined. 
“Failed plates,” identifi ed by abnormally poor values, are inspected 
visually and, if necessary, excluded from further data analysis. Upon 
completion of an assay run, raw plate reads for each titration point 
are fi rst normalized relative to the positive control compound 
(100 % for agonist mode and -100 % for antagonist mode assays) 
and DMSO- only   wells (0 %) placed in the fi rst four columns of 

2.1  Plate Level Data 
Processing, Curve 
Fitting 
and Classifi cation
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each plate as follows: % Activity = ((Vcompound − V DMSO )/
(Vpos − V DMSO )) × 100, where Vcompound denotes the compound 
well values, Vpos denotes the median value of the positive control 
wells, and V DMSO  denotes the median values of the DMSO-only 
wells, and then corrected using compound-free control plates (i.e., 
DMSO-   only plates) at the beginning and end of the compound 
plate stack to remove background patterns and subtle abnormali-
ties such as tip effects or blotting from cell dispenses [ 15 ]. 

 Corrected plate data are pivoted to form  concentration–response   
series, which are subsequently fi t to a four-parameter Hill equation [ 16 ] 
yielding concentrations of half-maximal activity (AC50) and maximal 
response (effi cacy) values [ 17 ]. Concentration- response curves are des-
ignated as Class 1–4 based on effi cacy, the number of data points 
observed above background activity, and the quality of fi t [ 18 ].  Curve 
classes   are heuristic measures of data confi dence. The qHTS curve clas-
sifi cation scheme has been recently amended to better suit the needs of 
toxicology research (Table  1 ) [ 6 ]. The most problematic  concentration 
responses   are automatically assigned  curve class   5 based on consider-
ations like the direction of activity (observing alternately both increases 
and decreases in signal over a short concentration range) and unusually 
large signal at low sample concentrations (activity at zero concentration 
is estimated to be >3SD of control) [ 6 ]. Class 5  curves   and other cases 
in which an inconsistency between the highest compound activity and 
the curve class assigned is identifi ed, such as assigning a compound with 

   Table 1  
  Amended  qHTS   curve classifi cation   

 Curve class  Description  Effi cacy   p -value a   Asymptotes  Infl ection 

 1.1  Complete curve  >6SD b   <0.05  2  Yes 

 1.2  Complete curve  ≤6SD; >3SD  <0.05  2  Yes 

 1.3  Complete curve  >6SD  ≥0.05  2  Yes 

 1.4  Complete curve  ≤6SD; >3SD  ≥0.05  2  Yes 

 2.1  Incomplete curve  >6SD  <0.05  1  Yes 

 2.2  Incomplete curve  ≤6SD; >3SD  <0.05  1  Yes 

 2.3  Incomplete curve  >6SD  ≥0.05  1  Yes 

 2.4  Incomplete curve  ≤6SD; >3SD  ≥0.05  1  Yes 

 3  Single point activity  >3SD  NA  1  No 

 4  Inactive  ≤3SD  ≥0.05  0  No 

 5 c   Inconclusive  NA  NA  NA  NA 

   a  p -value is derived from a F-test that measures the quality of curve fi t 
  b SD is the standard deviation of sample activities at the lowest tested concentration and values of the DMSO control wells 
  c Class 5 is a special class for samples with activity at zero concentration (zero activity; extrapolated) exceeding 6SD or 
with zero activity > 3SD and the difference between the maximal change in activity observed in the tested concentration 
range and zero activity is <3SD  

A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profi ling
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a positive response a negative curve class, are manually inspected to 
correct the  curve class, if   necessary. Adjustment is normally done by 
masking or by unmasking data points improperly masked by the auto-
mated curve fi tting process to adjust the curve fi t (Fig.  1 ). To facilitate 
analysis and  a  ctivity profi ling, each curve class is further combined with 
an effi cacy cutoff and  con  verted to a numerical curve rank such that 
more potent and effi cacious compounds with higher quality curves are 
assigned a higher rank (Table  2 ). Curve  ranks   should be viewed as a 
numerical measure of compound activity.

  Fig. 1    Example of outlier masking. Curves are manually inspected to mask or unmask data points improperly 
masked by the automated curve fi tting process to adjust the curve fi t when necessary       

   Table 2  
  Defi nition of  curve rank   as a numeric measure of compound activity   

 Curve class  Effi cacy  Curve rank  Activity category 

 1.1  9  Agonist 

 1.2  >50 %  8  Agonist 

 2.1  7  Agonist 

 1.2  ≤50 %  6  Agonist 

 2.2  >50 %  5  Agonist 

 2.2  ≤50 %  4  Inconclusive 

 1.3  3  Inconclusive 

 1.4  3  Inconclusive 

 2.3  2  Inconclusive 

 2.4  2  Inconclusive 

 3  2  Inconclusive 

 5  1  Inconclusive 

(continued)
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        After manual curation, the “clean” curve fi tting results from the rep-
licate assay runs are assessed for activity reproducibility to determine 
the fi nal assay performance. Each sample curve is fi rst assigned an 
activity outcome based on its curve class as follows: inactive (class 4), 
active agonist/antagonist (class 1.1, 2.1; class 5 due to super potency 
(AC50 < lowest test concentration)), agonist/antagonist (class 1.2, 
2.2), inconclusive agonist/antagonist (all other non-5 classes), no 
call (other cases of class 5). Each  activity outcome   category (exclud-
ing the “no call” category, which is treated as missing data) is then 
assigned a score: active agonist (3), agonist (2), inconclusive agonist 
(1), active antagonist (−3), antagonist (−2), inconclusive antagonist 
(−1), inactive (0). The pair-wise  activity outcome   score differences 
for all replicate curves of each sample are then averaged and the 
% of inactive calls for the sample calculated to determine the fi nal 
 reproducibility   call of the sample: active match (average score dif-
ference <1.1, %inactive call <25 %), inactive match (average score 
difference <1.1, %inactive call >50 %), mismatch (average score dif-
ference >2.5), inconclusive (all other cases). Each assay is assigned 
a performance score as follows:  reproducibility   score = 2 × %active 
match + %inactive match − %inconclusive − 2 × %mismatch.   

   In fl uorescence-based agonist mode assays, auto fl uorescent com-
pounds can show the same phenotype as those of agonists. Two 
approaches are used to identify potential auto fl uorescent artifacts to 
distinguish them from true agonists. One approach is using the auto 
fl uorescence detection counter screen [ 12 ] measured at the same 

2.2   Assay 
Performance 
Measured 
by  Reproducibility  

2.3    Identifi cation 
of  Auto   Fluorescence 
and  Cytotoxicity   
Artifacts

 Curve class  Effi cacy  Curve rank  Activity category 

 4  0  Inactive 

 −2.3  −2  Inconclusive 

 −2.4  −2  Inconclusive 

 −3  −2  Inconclusive 

 −1.3  −3  Inconclusive 

 −1.4  −3  Inconclusive 

 −2.2  ≤50 %  −4  Inconclusive 

 −2.2  >50 %  −5  Antagonist 

 −1.2  ≤50 %  −6  Antagonist 

 −2.1  −7  Antagonist 

 −1.2  >50 %  −8  Antagonist 

 −1.1  −9  Antagonist 

Table 2 (continued)
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wavelength as the assay readout (e.g., 460 nm for β-lactamase assays). 
Any compound with the agonist phenotype in the assay signal channel 
that also shows activation in the auto fl uorescence counter screen with 
an AC50 difference <3-fold is fl agged as a potential auto fl uorescent 
false positive. The second approach is examining the activity of each 
compound in all the assays screened having the same reporter (e.g., 
β-lactamase).    Compounds with the agonist phenotype in the assay sig-
nal channel (e.g., the 460 nm channel of β-lactamase assays) that also 
had an >4 average  curve rank   in the signal channel of all the assays with 
the same reporter are considered promiscuously active in such reporter 
gene assays and potentially auto fl uorescent. The compounds identi-
fi ed by either approach are assigned the “inconclusive agonist (fl uores-
cent)”  activity outcome   category. The auto fl uorescence counter screen 
data on the  Tox21   10 K have been made publicly available in PubChem 
[ 19 ] (assay IDs 720678, 720680, 720679, 720681, 720682, 720683, 
720687, 720675, 720674, 720685, 720686, 720684). The same 
methods could be applied to luciferase reporter gene assays to identify 
compounds that are promiscuous luciferase stabilizers. Luciferase 
counter screens are also currently underway as an auxiliary approach to 
identify such compounds in the  Tox21   10 K library. 

 In antagonist mode assays, cytotoxic compounds can show the 
same inhibitory phenotype as those of antagonists that need to be 
distinguished from true antagonists and fl agged as  cytotoxicity  - related 
false positive responses. For this reason, each antagonist mode assay 
screened for  Tox21   is accompanied with a  cell viability   readout that 
serves as the counter screen. Any compound with the antagonist phe-
notype in the assay signal channel that also shows inhibition in the  cell 
viability   counter screen with an AC50 difference <3-fold or  p  > 0.05 
( t -test) is fl agged as a potential cytotoxic false positive. As an alterna-
tive to the  cell viability   counter screen, the control channel in assays 
with multiple channel readouts (e.g., the 530 nm readout of 
β-lactamase assays) can be used to identify potential cytotoxic com-
pounds. Either activation or inhibition shown in this channel can be 
an indication of  cytotoxicity   [ 6 ]. The effectiveness of using the control 
readout to identify potential  cytotoxicity   artifacts has been compared 
with the  cell viability   counter screen. The two approaches achieve 
similar specifi city in correctly distinguishing true antagonists from 
cytotoxic artifacts, while fi ltering with the cell viability counter screen 
results in better sensitivity compared to the control readout   [ 11 ].  

   Compounds are assigned one of the following  activity outcome   
categories: active agonist, inconclusive agonist (due to poor curve 
quality), inconclusive agonist (due to  auto fl uorescence  ), active 
antagonist, inconclusive antagonist (due to poor curve quality), 
inconclusive antagonist (due to  cytotoxicity  ), inconclusive (activity 
direction cannot be determined), or inactive. The antagonist 
outcome labels in agonist mode assays are for compounds that 
show inhibition, which does not necessarily refl ect true antagonism 
but rather might refl ect increased cytotoxicity or promiscuous 

2.4  Compound 
Activity Assignment
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reporter gene inhibition. The agonist outcome labels in antagonist 
mode assays are for compounds that show activation, which does 
not necessarily refl ect true agonism but rather may refl ect com-
pound  auto fl uorescence   or promiscuous reporter gene activation. 
To generate these assignments,  curve ranks   from all replicates of a 
compound are fi rst averaged for each of the assay readouts, and the 
 activity outcome   of the compound in the assay readout is assigned 
based on the compound’s average  curve rank   and  reproducibility   
call as shown in Table  3 . For luminescence assays with a single 
readout that is run in agonist mode, such as the estrogen  recept  or 
alpha luciferase reporter gene assay (BG1-ER-luc) [ 11 ], this  activ-
ity outcome   is assigned as the fi nal activity outcome for a com-
pound. For the same assay run in antagonist mode in complex with 
a cell viability counter screen, an  activity outcome   is assigned to 
both the antagonist mode readout and the  cell viability   readout 
fi rst, and the fi nal assay  activity outcome   for a compound is deter-
mined according to Table  4  (c). For fl uorescence-based assays with 
multiple channel readouts (signal, control and ratio), such as the 
estrogen receptor alpha β-lactamase reporter gene assay (ER-bla)  
[ 11 ] or the mitochondrial membrane potential assay [ 9 ], the fi nal 
 ac  tivity outcome of a compound is determined based on its multi- 
channel activity as shown in Tables  4  (a) and (b). For antagonist 
mode assays, the  cell viability   counter screen data are used to fl ag 
potential cytotoxic artifacts. For agonist mode assays, potential 
artifacts produced by compounds that auto fl uoresce in the signal 
channel (e.g., 460 nm readout in the ER-bla assay) are fl agged 

   Table 3  
  Compound single channel  activity outcome   assignments based on  curve 
rank   and  reproducibility     

 Curve rank  Reproducibility call  Activity outcome 

 > −1 and <1  Inactive match  Inactive 

 > −1 and <1  Inconclusive  Inconclusive 

 ≥1  Mismatch  Inconclusive agonist 

 ≥1  Active match  Active agonist 

 >4  Inconclusive  Active agonist 

 ≥1 and ≤4  Inconclusive  Inconclusive agonist 

 ≤−1  Mismatch  Inconclusive antagonist 

 ≤−1  Active match  Active antagonist 

 < −4  Inconclusive  Active antagonist 

 ≥ −4 and ≤−1  Inconclusive  inconclusive antagonist 

A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profi ling
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    Table 4  
  Compound  activity outcome   assignments based on multi-channel assay readouts ( a ) multi-channel 
fl uorescence agonist mode assay ( b ) multi-channel fl uorescence antagonist mode assay ( c ) 
luminescence antagonist mode assay with  cytotoxicity   counter screen   

 (a) 

 Ratio outcome a   Signal channel 
outcome 

 Same reporter 
assay promiscuity 

 Auto fl uorescence 
outcome 

 Activity outcome 

 Inactive  N/A  N/A  N/A  Inactive 

 Inconclusive  N/A  N/A  N/A  Inconclusive 

 Active agonist  Agonist  Average curve 
rank ≤4 

 Inactive or AC50 
fl uor/AC50 signal 
≥3 

 Active agonist 

 Inconclusive 
agonist 

 Agonist  Average curve 
rank ≤4 

 Inactive or AC50 
fl uor/AC50 signal 
≥3 

 Inconclusive agonist 

 Agonist  Agonist  Average curve 
rank >4 

 Agonist and AC50 
fl uor/AC50 signal 
<3 

 Inconclusive agonist 
(fl uorescent) 

 Active 
antagonist 

 Antagonist  N/A  N/A  Active antagonist 

 Inconclusive 
antagonist 

 Antagonist  N/A  N/A  Inconclusive 
antagonist 

   a Ratio = signal channel/control channel 
 Abbreviations:  AC50 fl uor  = AC50 in the auto fl uorescence assay,  AC50 signal  = AC50 in the ratio channel  
            

 (b) 

 Ratio outcome a   Signal channel 
outcome 

 Cell viability 
outcome 

 Other conditions  Activity outcome 

 Inactive  N/A  N/A  N/A  Inactive 

 Inconclusive  N/A  N/A  N/A  Inconclusive 

 Active agonist  Agonist  Inactive or 
agonist 

 N/A  Active agonist 

 Active agonist  Agonist  Antagonist  AC50 viability/AC50 
signal ≥3 ( p  < 0.05) 

 Active agonist 

 Inconclusive 
agonist 

 Agonist  N/A  N/A  Inconclusive agonist 

(continued)
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 (c) 

 Signal channel 
outcome 

 Cell viability 
outcome 

 Other conditions  Activity outcome 

 Inactive  N/A  N/A  Inactive 

 Inconclusive  N/A  N/A  Inconclusive 

 Active agonist  Inactive or agonist  N/A  Active agonist 

 Active agonist  Antagonist  AC50 viability/AC50 signal 
≥3 ( p  < 0.05) 

 Active agonist 

 INCONCLUSIVE 
agonist 

 N/A  N/A  inconclusive agonist 

 Agonist  Antagonist  AC50 viability/AC50 signal 
<3 or  p  ≥ 0.05 

 Inconclusive agonist 
(cytotoxic) 

 Active antagonist  Inactive or agonist  N/A  Active antagonist 

 Active antagonist  antagonist  AC50 viability/AC50 signal 
≥3 ( p  < 0.05) 

 Active antagonist 

 Inconclusive 
antagonist 

 N/A  N/A  Inconclusive antagonist 

 Antagonist  antagonist  AC50 viability/AC50 signal 
<3 or  p  ≥ 0.05 

 Inconclusive antagonist 
(cytotoxic) 

   Abbrevations:  AC50 viability  = AC50 in the cell viability assay,  AC50 signal  = AC50 in the antagonist mode assay  

 (b) 

 Agonist  Agonist  Antagonist  AC50 viability/AC50 
signal <3 or  p  ≥ 0.05 

 Inconclusive agonist 
(cytotoxic) 

 Active 
antagonist 

 Antagonist  Inactive or 
agonist 

 N/A  Active antagonist 

 Active 
antagonist 

 Antagonist  Antagonist  AC50 viability/AC50 
signal ≥3 ( p  < 0.05) 

 Active antagonist 

 Inconclusive 
antagonist 

 Antagonist  N/A  N/A  Inconclusive 
antagonist 

 Antagonist  Antagonist  Antagonist  AC50 viability/AC50 
signal <3 or  p  ≥ 0.05 

 Inconclusive 
antagonist 
(cytotoxic) 

   a Ratio = signal channel/control channel 
 Abbreviations:  AC50 viability  = AC50 in the cell viability assay,  AC50 signal  = AC50 in the ratio channel  

Table 4
(continued)
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using both the compound  auto fl uorescence   profi ling data and the 
promiscuous compound activity shown in the signal readout of all 
the assays screened in  Tox21   that have the same reporter (e.g., 
β-lactamase).    The complete activity assignment process is illus-
trated in Fig.  2 .

3            Data Sharing 

 As soon as the initial data parsing and assessment at the NCATS are 
complete, the  concentration response   data, curve fi tting results, the 
raw plate reads, the assay conditions, and the sample mapping infor-
mation are shared with the Tox21 partners through a suite of data-
bases and software tools custom built by the NCATS for the  Tox21   
program (  http://tripod.nih.gov/tox/    ). Within the fi rst 6 months 
of data generation, the assay data are only made available to the 
 Tox21   partners through the aforementioned  controlled- access site 

  Fig. 2    Compound activity assignment process. This  fl owchart  shows the process of assigning a fi nal assay 
 activity outcome   to a compound based on its  qHTS   data from replicate assay runs, multiple readouts, and 
counter screens       
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in which the data are further scrutinized for quality and utility. The 
data are then released to the public domain in a number of public 
databases including  PubChem   (  http://pubchem.ncbi.nlm.nih.
gov/    ), CEBS (  http://tools.niehs.nih.gov/cebs3/ui/    ) and ACToR 
(  http://actor.epa.gov    ). The high-quality  concentration response   
data generated on a wide spectrum of pathways and phenotypic 
toxicity endpoints provide a valuable resource for predictive toxicity 
modeling. These data can not only serve as in vitro signatures that 
can be used to predict in vivo toxicity endpoints [ 20 ,  21 ] and to 
prioritize chemicals for more in depth toxicity testing [ 22 ] that 
helps fulfi ll the goals of the  Tox21   program, but also provide rich 
training data sets for the QSAR (quantitative structure–activity rela-
tionship) modeling community to build more robust models [ 23 , 
 24 ] such as the ones in the recent Tox21 Data Challenge hosted by 
NCATS in 2014  (  https://tripod.nih.gov/tox21/challenge/    ) [ 25 ].     
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